H=-16t^2-4+412

Simple and best practice solution for H=-16t^2-4+412 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2-4+412 equation:



=-16H^2-4+412
We move all terms to the left:
-(-16H^2-4+412)=0
We get rid of parentheses
16H^2+4-412=0
We add all the numbers together, and all the variables
16H^2-408=0
a = 16; b = 0; c = -408;
Δ = b2-4ac
Δ = 02-4·16·(-408)
Δ = 26112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26112}=\sqrt{256*102}=\sqrt{256}*\sqrt{102}=16\sqrt{102}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{102}}{2*16}=\frac{0-16\sqrt{102}}{32} =-\frac{16\sqrt{102}}{32} =-\frac{\sqrt{102}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{102}}{2*16}=\frac{0+16\sqrt{102}}{32} =\frac{16\sqrt{102}}{32} =\frac{\sqrt{102}}{2} $

See similar equations:

| 3w=30+3w | | -2=-t+62 | | 10^2+13^2=x^2 | | -3v+4=58 | | 10^2+10^2=x^2 | | 9z+9z=18 | | -6(x+5)-3=-9+2x | | -3(x+7)=3x+21 | | 2/4n=10 | | 12.5=(x/5) | | 4(d+2)-2d=6+4d | | w+86=2 | | 4(5x+3)=14x30 | | 5(a+12)=10 | | 7x²-26x-8=0 | | (⅛)=z-(¾) | | (20*20)+(48*48)=(x*x) | | -7y+5(y-3)=-23 | | 4(2x-2)-2=4(x-5)+46 | | v–25=2 | | -7x+7=1-6x | | r2+3=6 | | -7v+2(v+6)=17 | | 2(3y=8)=70 | | (21*21)+(17*17)=(x*x) | | 16=6c+2c | | -17x+33x=28 | | 7(4-6x)=308 | | 20-5x=75-(-5)×(-3) | | -2x-6=2-4x-(x-1)) | | -17x=33x=28+ | | 6b-7=-13+5b |

Equations solver categories